REFRACTION OF OBLIQUE SHOCK WAVE FRONT
AT BOUNDARY WITH LESS RIGID MEDIUM

A. N. Dremin and G. I. Kanel"’

Approximate methods are presented for calculating the unloading polars (we replace the isentrope by
a broken line on each segment of which the sound speed is constant) and speed of sound behind the shock
wave front in dense condensed media. The refraction parameters found with the aid of these calculations
are well confirmed experimentally. Equations are given for calculating the magnitude of the critical angle
of regular reflection of an oblique shock wave at the boundary with a less rigid medium and the magnitude
of the angle corresponding to the maximal flow deflection on the shock polar.

The reflection and refraction of an oblique shock wave at the interface with a material having greater
dynamic stiffness were examined in [1-3]. In this case the reflected wave is a shock wave. The parame-
ters of the reflected and refracted shock waves are determined graphically in the coordinates: p = pres-
sure, g = angle of deflection of the flow at the intersection of the shock polar of the second medium with
the shock polar for the reflected shock wave in the first medium. However, if the second medium has less
dynamic stiffness the reflected wave is a fan-shaped rarefaction wave (Fig. 1). Then the refraction pa-
rameters are defined by the intersection of the shock polar of the second medium with the unloading polar
of the first medium [4]. The unloading polars are constructed by calculating the flow in the Prandtl-Meyer
rarefaction wave [4, 5]. However the exact calculation for materials with arbitrary equation of state is
quite complex, In the present paper we propose an approximate method for calculating Prandtl-Meyer
flow for condensed media which gives good agreement with experimental data. The solution of the problem
of oblique shock wave front refraction when transitioning into a medium with lower dynamic stiffness is
necessary, for example, in calculating the shock compression parameters under explosive welding condi-
tions and under the conditions of shock compression of specimens in preservation ampules.

1. Approximate Calculation of Flow in Prandtl-Meyer Rare-
faction Wave. Prandtl-Meyer flow is isentropic and is described in
cylindrical coordinates by the following system of momentum and
mass conservation equations
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Here v , and v,, are respectively the angular and radial com-
ponents of the flow velocity v, ¢ is the coordinate angle, p density,

Fig 1. Refraction of oblique p pressure, The equations (1.1) are written under the assumption
shock wave front at boundary that all the parameters are constant along the coordinate radius. The
with less rigid medium: §; = last two equations imply equality of the flow velocity-angular com-
incident shock wave front; S, = ponent to the local speed of sound

refracted shock wave fronti vg=c= (@p /ap)g=

R = Prandtl-Meyer rarefaction

wave; mom = interface. Arrows For the approximate calculation we propose to replace the isen-
show direction of flow in coor- trope by a broken line on each segment of which the speed of sound is

dinate system fixed with point O, constant (Fig. 2). Forc=vg, = const the Eq. (1.1) takes the form
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Fig. 2 Fig, 3
Fig. 2. Construction of approximate isentrope.

Fig. 3. Prandtl-Meyer rarefaction wave when isentrope
is broken curve, Rarefaction takes place in shaded zones,
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Fig. 4. Calculated (solid curves) and experimental sound
speeds on shock adiabat versus compression ratio for metals,

Fig. 5. 1,3) Shock polars of aluminum and plexiglass for
vy = 14.2 km/sec; 2) unloading polar for aluminum.

do, . 1 dp dp
do =c, vr:"'-p—c Fq)—v po, ¢ de =0 (1°2)

Excluding d¢ from the first and third equations (1.2), we obtain

oyd, =_Ca-d§. (1.3)

Integration of (1.3) in the limits of an approximate isentrope segment, on which the speed of sound is
constant, yields

Pa—
a 2 3 9 2 n—1
Vv 2 =vp—v, f=2 % = (1.4)

Here the subscript n — 1 relates tothe upper end of the isentrope segment, andn — 1 applies to the lower
end. We obtain the change of the coordinate angle for the given flow region by integrating the first equa-
tion (1.2)

Pp— Py = (¥, — O 1)/ Cany (1.5)
The flow deflection angle

Opns = (0 F ) = @y +p g, a=aretg(e/v,) (1.6)
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4 where « is the local Mach angle.

a) 7 - b)
/ If the material isentrope is a broken curve (i.e., the speed of
- Y% sound changes in jumps) the unloading fan is not continuous. There
4 A 3 § Ladio & are flow zones with the same speed of sound, in which unloading
mﬁ//: takes place; between these zones the pressure, density, and flow
velocity v, are constant (Fig. 3) and correspond to the final values
for the preceding rarefaction zone or the initial values for the next
N — r 3 zone., The magnitude of the radial velocity component V;,n of the
flow entering the rarefaction zone is found from the relation

! " ; = a0 = 0%y 0, .7

where V;,n is the radial component of the flow velocity at the exit

io. 6. ic of .
Fig a) Schematic of experi from the preceding rarefaction zone,

ment to determine refraction

parameters: 1) explosive lens; 2. Speed of Sound Calculation. It has been established ex-
2) explosive charge; 3) aluminum perimentally that in the coordinates p-u (pressure—mass velocity
specimen; 4) Plexiglas specimen, increment) the unloading isentrope and the two-stage compression
height 10 mm; 5) Plexiglas plate; shock adiabat for monolithic metals deviate from the single-stage
6) air gap 0.1 mm thick; 7) mirror, compression shock adiabat by no more than 3% for pressures up to
arrow shows ray direction to pho- 500 kbar [6]. If we assume that the single-stage and two-stage
torecorder; b) wave configuration; compression shock adiabats coincide, then as noted in [2] we can
c¢) typical photochronogram, write the condition for equality of the pressures in single and

double shock compression for the same overall mass velocity

increments

P (uy + ue) = p (@) + Pz (ug,0) (2 -1)

where the subscript ldenotes the initial parameters ahead of the second shock wave front, and the sub-
script 1,2 denotes the parameters of the second shock wave. The pressure jump in the shock wave front
is p = pyDu. The connection between the shock wave front velocity D and mass velocity jump u is usually
represented in the form D = ¢; + Au. Therefore Eq. (2.1) may be rewritten as

po leo 4 A (g 4 w2} (8 + #2,2) = po (e + Muy) uy A 04Dy, Uge

Hence we obtain the "second compression" shock adiabat

Dy = + Ay gy
where

M= (o/pdr=1%r/0

Ao—1
01=-—g—:— (co -+ 2Ana) =??S[[C:S—j-k((%_—_1%- 2.2)

It is natural to assume that c, is the speed of sound at a given point of the shock adiabat. In fact,
comparison of the values calculated using (2.2) with the experimental values presented in [7] from meas-
urement of the speeds of sound in shock-compressed metals shows good agreement (Fig. 4). In calculating
the speeds of sound the shock adiabat for aluminum was used in the form D = 5.25 + 1.39 u. The shock
adiabats of copper, lead, and iron curve markedly with increase of u. For these metals we used the shock
adiabats presented in [8], represented in the form of straight line segments with different slopes.

3. Approximate Calculation and Experimental Determination of Oblique Shock Wave Refraction
Parameters at Aluminum-Plexigias Interface, In this study we caleculated and verified experimentally for
a concrete example the refraction of an oblique shock wave in aluminum at the boundary with Plexiglas,

In the calculation the overall density change in the rarefaction wave is divided into segments of mag-
nitude Apn, n-1= 0.1 g/cm?. For each segment we used (2.2) to find the mean value of the speed of sound
squared C%,n—i- The corresponding decrease of the pressure on the approximate isentrope was calculated
as App n—1 = C%l,n-: = APy p-y- Here it is assumed that for a fixed density the isentrope slopes are not very
sensitive to pressure, which is confirmed by more exact calculations [9]. The remaining flow parameters
are found using (1.4)-(.7). The shock polars for aluminum and Plexiglas and the unloading polar for alu-
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minum calculated for the experimental conditions are shown in Fig. 5. For the calculation of the Plexiglas
shock polar we used the shock adiabat in the form D = (2.6 + 1.5 u) km/sec. We see from Fig. 5 that the
unloading polar practically coincides with the mirror image of the shock polar., This is apparently due to
the small difference between the shock adiabat and the isentrope and the small degree of compression in
the shock wave.

The experimental determination of the shock wave front refraction parameters was made using the
scheme shown in Fig. 6a. Shock wave front passage through the air gaps was recorded by a high-speed
photorecorder operating in the slit scanning mode on the basis of the luminescence of the air, A typical
photochronogram is shown in Fig. 6c. The photochronograms were used to determine the shock wave ve-
locity Dg in the aluminum specimens and the angle ¥ between the oblique shock wave in the Plexiglas and
the interface (Fig. 6b). The latter was calculated from the equation

Dyt /zsinB -} cosB (3.1)

§ == arc cig Stnp

where 8 is the angle between the incident shock wave front and the interface; T and x are the instantaneous
coordinates of the oblique shock wave trace in the Plexiglas on the photochronogram. The specimen height
in these experiments was 10 mm, the angle 8 = 30°, The measured (average of four experiments) parame-
ters were: Dy =7.1 # 0.1 km/sec, ¥ =22,36 * 0.2°, The parameters of the oblique shock wave in Plexiglas
calculated from ¥ and v, = Dy/sin g have the values: Dy = 5.41# 0,05 km/sec, py = 119.4 £ 3 kbar. We see
from Fig. 5 that the agreement between the calculations and experimental values is quite good,

For comparison we can note that for 8 = 0 the shock wave velocity in Plexiglas Dy = 5.50 km/sec,
which corresponds to p = 126 kbar., From this we can conclude that in the present case, as in the case of
oblique shock wave refraction when passing into a medium with higher dynamic stiffness [2], the refraction
coefficient n = Dy /Dy changes very little with change of the angle.

4. Refraction Process Stationarity Limit. There is a critical incidence angle 8* upon exceeding
which the reflected unloading wave moves away from the interface and the refraction process becomes non~
stationary. The angle 5* is determined by equality of the flow velocity behind the shock wave front (rela-
tive to the point of intersection of the shock wave front with the interface) and the speed of sound behind
the shoek wave front, i.e.,

(D — u) 2 + D?ctg? f* = ¢* 4.1)

If the speed of sound is expressed through (2.2) the expression for the magnitude of the critical angle
as a function of the shock wave parameters is obtained in the form

ctg B = (D — u) D=2 [Au 2D + )’ 4.2)

Equation {4.2) can be used to calculate the lateral unloading angle when a cylindrical specimen is
loaded by a plane shock wave [7].

Knowing the dependence of the critical angle magnitude on the shock wave parameters, we can deter-
mine whether or not in the case of condensed media the flow corresponding to the maximal angle of deflec-
tion on the shock polar is subsonic relative to the oblique shock wave front, It is shown in [5] that in the
case of an ideal gas the maximally deflecting flow is subsonic.

In the variables ¢ (flow deflection angle) and u (mass velocity jump in the shock wave front) the
shock polar for condensed media is represented in the form

tot (A—1)u
Vo=t b

The maximal flow deflection angle is defined by the condition dg/du = 0. After differentiation and
simplification, the condition for the maximal flow deflection angle is obtained in the form

U
—are {

4
0 == arc sin

{4.3)

vt — D= hu (D —u) (4.4)
For this case the shock wave front incidence angle B is defined as
ctg By = D=1 (w2 — DAY = D' [hu (D — u)]"? 4.5)

Comparison of 8* and gy, shows that for A = 1.5, gy, > *, while for A < 1.5 the ratio §* /By, in-
creases with increase of u and exceeds the value 1 if
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ARA—=3) ut+co(Bh—2)u4 =10

This implies that in condensed medija the maximally deflecting flow may be either subsonic or super-

sonic. We can make another remark which is significant for practical applications. The conditions at the
interface for refraction of an oblique shock wave require equality of the pressures in the refracted and re-
flected waves and parallelism of the flows, but equality of the flow velocities is not required. Therefore
the flow velocity components parallel to the interface in the refracted and reflected waves may differ, i.e.,
the interface may be a tangential discontinuity.
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